

InterpretDL

InterpretDL is an open source toolkit for interpretation algorithms based on PaddlePaddle.
This toolkit contains three kinds of interpreters: input feature interpreters, intermediate-layer feature interpreters,
and dataset-level interpreters.
InterpretDL also provides the evaluation metrics to verify the trustworthiness of interpretation algorithms.

Contents:

	Interpreters
	Base Interpreter
	Abstract Interpreter

	Sub-abstract: Input Gradient Interpreter

	Sub-abstract: Input Output Interpreter

	Sub-abstract: Intermediate-Layer Interpreter

	Sub-abstract: Transformer Interpreter

	Input Feature Based Interpreters
	Consensus

	Gradient Shap

	Integrated Gradients

	LIME

	GLIME

	LIME With Global Prior

	LRP

	Occlusion

	Smooth Gradients

	Smooth Gradients V2

	NormLIME

	TAM

	Generic Attention

	Bidirectional Transformer Interpreter

	Intermediate-Layer Feature Interpreters
	Grad-CAM

	Score CAM

	Rollout

	Dataset-Level Interpreters
	Training Dynamics

	Beyond Hand-designed Feature Interpreter

	Forgetting Events

	SGDNoise

	TrainIng Data analYzer (TIDY)

	Interpreter Trustworthiness Evaluation Metrics
	Abstract Evaluator

	DeletionInsertion

	Perturbation

	Infidelity

	Model Interpretability Evaluation Metrics
	PointGame

	PointGameSegmentation

Indices and tables

	Index

	Module Index

	Search Page

Interpreters

	Base Interpreter
	Abstract Interpreter

	Sub-abstract: Input Gradient Interpreter

	Sub-abstract: Input Output Interpreter

	Sub-abstract: Intermediate-Layer Interpreter

	Sub-abstract: Transformer Interpreter

	Input Feature Based Interpreters
	Consensus

	Gradient Shap

	Integrated Gradients

	LIME

	GLIME

	LIME With Global Prior

	LRP

	Occlusion

	Smooth Gradients

	Smooth Gradients V2

	NormLIME

	TAM

	Generic Attention

	Bidirectional Transformer Interpreter

	Intermediate-Layer Feature Interpreters
	Grad-CAM

	Score CAM

	Rollout

	Dataset-Level Interpreters
	Training Dynamics

	Beyond Hand-designed Feature Interpreter

	Forgetting Events

	SGDNoise

	TrainIng Data analYzer (TIDY)

Base Interpreter

Abstract Interpreter

	
class interpretdl.Interpreter(model: callable, device: str, **kwargs)

	Interpreter is the base abstract class for all Interpreters.
The implementation of any Interpreter should at least

(1) prepare predict_fn that outputs probability predictions, gradients or other desired
intermediate results of the model, and

(2) implement the core function interpret() of the interpretation algorithm.

In general, we find this implementation is practical, makes the code more readable and can highlight the core
function of the interpretation algorithm.

This kind of implementation works for all post-poc interpretation algorithms. While some algorithms may have
different features and other fashions of implementations may be more suitable for them, our style of implementation
can still work for most of them. So we follow this design for all Interpreters in this library.

Three sub-abstract Interpreters that implement _build_predict_fn() are currently provided in this file:
InputGradientInterpreter, InputOutputInterpreter, IntermediateLayerInterpreter. For each
of them, the implemented predict_fn can be used by several different algorithms. Therefore, the further
implementations can focus on the core algorithm. More sub-abstract Interpreters will be provided if necessary.

Warning

use_cuda would be deprecated soon. Use device directly.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
_build_predict_fn(**kwargs)

	Build predict_fn for interpreters. This will be called by interpret().

	
_env_setup()

	Prepare the environment setup. This is not always necessary because the setup can be done within the
function of _build_predict_fn().

	
interpret(**kwargs)

	Main function of the interpreter.

Sub-abstract: Input Gradient Interpreter

	
class interpretdl.InputGradientInterpreter(model: callable, device: str, **kwargs)

	This is one of the sub-abstract Interpreters.

InputGradientInterpreter are used by input gradient based Interpreters. Interpreters that are derived from
InputGradientInterpreter include GradShapCVInterpreter, IntGradCVInterpreter,
SmoothGradInterpreter.

This Interpreter implements _build_predict_fn() that returns input gradient given an input.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
_build_predict_fn(rebuild: bool = False, gradient_of: str = 'probability')

	Build predict_fn for input gradients based algorithms.
The model is supposed to be a classification model.

	Parameters

	
	rebuild (bool, optional) – forces to rebuild. Defaults to False.

	gradient_of (str, optional) – computes the gradient of
["loss", "logit" or "probability"] w.r.t. input data. Defaults to "probability".
Other options can get similar results while the absolute scale might be different.

Sub-abstract: Input Output Interpreter

	
class interpretdl.InputOutputInterpreter(model: callable, device: str, **kwargs)

	This is one of the sub-abstract Interpreters.

InputOutputInterpreter are used by input-output correlation based Interpreters. Interpreters that are derived
from InputOutputInterpreter include OcclusionInterpreter, LIMECVInterpreter,
SmoothGradInterpreter.

This Interpreter implements _build_predict_fn() that returns the model’s prediction given an input.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
_build_predict_fn(rebuild: bool = False, output: str = 'probability')

	Build predict_fn for Input-Output based algorithms.
The model is supposed to be a classification model.

	Parameters

	
	rebuild (bool, optional) – forces to rebuild. Defaults to False.

	output (str, optional) – computes the logit or probability. Defaults: "probability". Other options can
get similar results while the absolute scale might be different.

Sub-abstract: Intermediate-Layer Interpreter

	
class interpretdl.IntermediateLayerInterpreter(model: callable, device: str, **kwargs)

	This is one of the sub-abstract Interpreters.

IntermediateLayerInterpreter exhibits features from intermediate layers to produce explanations.
This interpreter extracts intermediate layers’ features, but no gradients involved.
Interpreters that are derived from IntermediateLayerInterpreter include
RolloutInterpreter, ScoreCAMInterpreter.

This Interpreter implements _build_predict_fn() that returns the model’s intermediate outputs given an
input.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
_build_predict_fn(rebuild: bool = False, target_layer: str = None, target_layer_pattern: str = None)

	Build predict_fn for IntermediateLayer based algorithms.
The model is supposed to be a classification model.
target_layer and target_layer_pattern cannot be set at the same time. See the arguments below.

	Parameters

	
	rebuild (bool, optional) – forces to rebuild. Defaults to False.

	target_layer (str, optional) – the name of the desired layer whose features will output. This is used when
there is only one layer to output. Conflict with target_layer_pattern. Defaults to None.

	target_layer_pattern (str, optional) – the pattern name of the layers whose features will output. This is
used when there are several layers to output and they share a common pattern name. Conflict with
target_layer. Defaults to None.

Sub-abstract: Transformer Interpreter

	
class interpretdl.TransformerInterpreter(model: callable, device: str, **kwargs)

	This is one of the sub-abstract Interpreters.

TransformerNLPInterpreter are used by Interpreters for Transformer based model. Interpreters that are derived from
TransformerNLPInterpreter include BTNLPInterpreter, GANLPInterpreter.

This Interpreter implements _build_predict_fn() that returns servral variables and gradients in each layer.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
_build_predict_fn(rebuild: bool = False, embedding_name: str = None, attn_map_name: str = None, attn_v_name: str = None, attn_proj_name: str = None, gradient_of: str = None)

	Build predict_fn for transformer based algorithms.
The model is supposed to be a classification model.

	Parameters

	
	rebuild (bool, optional) – forces to rebuild. Defaults to False.

	embedding_name (str, optional) – the layer name for embedding, if in need.

	attn_map_name (str, optional) – the layer name for attention weights, if in need.

	attn_v_name (str, optional) – the layer name for attention value.

	attn_proj_name (str, optional) – the layer name for attention projection, if in need.

	nlp (bool, default to False) – whether the input data is for language test.

Input Feature Based Interpreters

Consensus

	
class interpretdl.ConsensusInterpreter(InterpreterClass, list_of_models: list, device: str = 'gpu:0', **kwargs)

	ConsensusInterpreter averages the explanations of a given Interpreter over a list of models. The averaged result
is more like an explanation for the data, instead of specific models. For visual object recognition tasks, the
Consensus explanation would be more aligned with the object than individual models.

More details regarding the Consensus method can be found in the original paper:
https://arxiv.org/abs/2109.00707.

For reference, the list_of_models can be found from paddle.vision.models or
PPClas [https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/ppcls/arch/backbone/__init__.py].

	Parameters

	
	InterpreterClass ([type]) – The given Interpreter defined in InterpretDL.

	list_of_models (list) – a list of trained models.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(inputs: str, **kwargs) → numpy.ndarray

	The technical details are simple to understand for the Consensus method:
Given the inputs and the interpretation algorithm (one of the Interpreters), each model in
list_of_models will produce an explanation, then Consensus will concatenate all the explanations.
Subsequent normalization and average can be done as users’ preference. The suggested operation for input
gradient based algorithms is average of the absolute values.

We leave the visualization to users.
See the notebook example [https://github.com/PaddlePaddle/InterpretDL/tree/master/tutorials/example_consensus_cv.ipynb]
for an example.

import interpretdl as it
from paddle.vision.models import resnet34, resnet50, resnet101, mobilenet_v2

list_models = {
 'resnet34': resnet34(pretrained=True),
 'resnet50': resnet50(pretrained=True),
 'resnet101': resnet101(pretrained=True),
 'mobilenet_v2': mobilenet_v2(pretrained=True)
}
consensus = ConsensusInterpreter(it.SmoothGradInterpreter, list_models.values(), device='gpu:0')

import matplotlib.pyplot as plt
import numpy as np

cols = len(list_models) + 1
psize = 4
fig, ax = plt.subplots(1, cols, figsize=(cols*psize, 1*psize))

for axis in ax:
 axis.axis('off')

for i in range(len(list_models)):
 ax[i].imshow(np.abs(exp[i]).sum(0))
 ax[i].set_title(list(list_models.keys())[i])

ax[-1].imshow(np.abs(exp).sum(1).mean(0))
ax[-1].set_title('Consensus')

	Parameters

	inputs (str or list of strs or numpy.ndarray) – The input image filepath or a list of filepaths or numpy
array of read images.

	Returns

	Concatenated raw explanations.

	Return type

	np.ndarray

Gradient Shap

	
class interpretdl.GradShapCVInterpreter(model: callable, device: str = 'gpu:0')

	Gradient SHAP Interpreter for CV tasks.

For input gradient based interpreters, the target issue is generally the vanilla input gradient’s noises.
The basic idea of reducing the noises is to use different similar inputs to get the input gradients and
do the average.

GradShap uses noised inputs to get input gradients and then average.

More details regarding the GradShap method can be found in the original paper:
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(inputs: str, labels: list = None, baselines: numpy.ndarray = None, n_samples: int = 5, noise_amount: float = 0.1, gradient_of: str = 'probability', resize_to: int = 224, crop_to: int = None, visual: bool = True, save_path: str = None) → numpy.ndarray

	The technical details of the GradShap method are described as follows:
GradShap generates n_samples noised inputs, with the noise scale of noise_amount, and then computes
the gradients w.r.t. these noised inputs. A difference between baselines and noised inputs is considered.
The final explanation is the multiplication between the gradients and the difference to baselines.

	Parameters

	
	inputs (str or list) – The input image filepath or a list of filepaths or numpy array of read images.

	labels (list or np.ndarray, optional) – The target labels to analyze. The number of labels should be equal
to the number of images. If None, the most likely label for each image will be used. Default: None.

	baselines (np.ndarray, optional) – The baseline images to compare with. It should have the same shape as
images and same length as the number of images. If None, the baselines of all zeros will be used.
Default: None.

	n_samples (int, optional) – The number of randomly generated samples. Defaults to 5.

	noise_amount (float, optional) – Noise level of added noise to each image. The std of Gaussian random noise
is noise_amount * (x max - x min). Default: 0.1.

	gradient_of (str, optional) – compute the gradient of [‘probability’, ‘logit’ or ‘loss’]. Default:
'probability'. SmoothGrad uses probability for all tasks by default.

	resize_to (int, optional) – Images will be rescaled with the shorter edge being resize_to. Defaults to
224.

	crop_to (int, optional) – After resize, images will be center cropped to a square image with the size
crop_to. If None, no crop will be performed. Defaults to None.

	visual (bool, optional) – Whether or not to visualize the processed image. Default: True.

	save_path (str, optional) – The filepath(s) to save the processed image(s). If None, the image will not be
saved. Default: None.

	Returns

	the explanation result.

	Return type

	np.ndarray

	
class interpretdl.GradShapNLPInterpreter(model: callable, device: str = 'gpu:0')

	TODO: Inherit from a subabstract interpreter.
Gradient SHAP Interpreter for NLP tasks.

For input gradient based interpreters, the target issue is generally the vanilla input gradient’s noises.
The basic idea of reducing the noises is to use different similar inputs to get the input gradients and
do the average.

The inputs for NLP tasks are considered as the embedding features. So the noises or the changes of inputs
are done for the embeddings.

More details regarding the GradShap method can be found in the original paper:
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(data: tuple, labels: list = None, n_samples: int = 5, noise_amount: float = 0.1, embedding_name: str = 'word_embeddings', return_pred: bool = True) → numpy.ndarray

	The technical details of the GradShap method for NLP tasks are similar for CV tasks, except the noises are
added on the embeddings.

	Parameters

	
	data (tupleornp.ndarray) – The inputs to the NLP model.

	labels (listornp.ndarray, optional) – The target label to analyze. If None, the most likely label will be
used. Default: None.

	n_samples (int, optional) – The number of randomly generated samples. Defaults to 5.

	noise_amount (float, optional) – Noise level of added noise to the embeddings. The std of Gaussian random
noise is noise_amount * embedding.mean() * (x max - x min). Default: 0.1.

	embedding_name (str, optional) – name of the embedding layer at which the noises will be applied.
The name of embedding can be verified through print(model). Defaults to word_embeddings.

	return_pred (bool, optional) – Whether or not to return predicted labels and probabilities.
If True, a tuple of predicted labels, probabilities, and interpretations will be returned.
There are useful for visualization. Else, only interpretations will be returned. Default: True.

	Returns

	explanations, or (explanations, pred).

	Return type

	np.ndarray or tuple

Integrated Gradients

	
class interpretdl.IntGradCVInterpreter(model: callable, device: str = 'gpu:0', **kwargs)

	Integrated Gradients Interpreter for CV tasks.

For input gradient based interpreters, the target issue is generally the vanilla input gradient’s noises.
The basic idea of reducing the noises is to use different similar inputs to get the input gradients and
do the average.

IntGrad uses the Riemann approximation of the integral, i.e., interpolated values between a baseline (zero)
and the original input as inputs, and computes the gradients which will be averaged as the final explanation.

More details regarding the Integrated Gradients method can be found in the original paper:
https://arxiv.org/abs/1703.01365.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(inputs: str, labels: list = None, baselines: numpy.ndarray = None, steps: int = 50, num_random_trials: int = 10, gradient_of: str = 'probability', resize_to: int = 224, crop_to: int = None, visual: bool = True, save_path: str = None) → numpy.ndarray

	The technical details of the IntGrad method are described as follows:
Given inputs, IntGrad interpolates steps points between baselines (usually set to zeros) and
inputs. baselines can be set to random, so that num_random_trials baselines are used,
instead of zeros. Then IntGrad computes the gradients w.r.t. these interpolated values and averages the
results as final explanation.

	Parameters

	
	inputs (str or list) – The input image filepath or a list of filepaths or numpy array of read images.

	labels (list or tuple or np.ndarray or None, optional) – The target labels to analyze. The number of labels
should be equal to the number of images. If None, the most likely label for each image will be used.
Default: None.

	baselines (np.ndarray or None, optional) – The baseline images to compare with. It should have the same
shape as images and same length as the number of images. If None, the baselines of all zeros will be
used. Default: None.

	steps (int, optional) – number of steps in the Riemann approximation of the integral. Default: 50.

	num_random_trials (int, optional) – number of random initializations to take average in the end.
Default: 10.

	gradient_of (str, optional) – compute the gradient of [‘probability’, ‘logit’ or ‘loss’]. Default:
'probability'. Multi-class classification uses probabitliy, while binary classification uses logit.

	resize_to (int, optional) – Images will be rescaled with the shorter edge being resize_to. Defaults to
224.

	crop_to (int, optional) – After resize, images will be center cropped to a square image with the size
crop_to. If None, no crop will be performed. Defaults to None.

	visual (bool, optional) – Whether or not to visualize the processed image. Default: True.

	save_path (str, optional) – The filepath(s) to save the processed image(s). If None, the image will not be
saved. Default: None.

	Returns

	the explanation result.

	Return type

	np.ndarray

	
class interpretdl.IntGradNLPInterpreter(model: callable, device: str = 'gpu:0', **kwargs)

	Integrated Gradients Interpreter for NLP tasks.

For input gradient based interpreters, the target issue is generally the vanilla input gradient’s noises.
The basic idea of reducing the noises is to use different similar inputs to get the input gradients and
do the average.

The inputs for NLP tasks are considered as the embedding features. So the noises or the changes of inputs
are done for the embeddings.

More details regarding the Integrated Gradients method can be found in the original paper:
https://arxiv.org/abs/1703.01365.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(raw_text: str, tokenizer: callable = None, text_to_input_fn: callable = None, label: list = None, steps: int = 50, gradient_of: str = 'logit', embedding_name: str = 'word_embeddings', max_seq_len: int = 128, visual: bool = False) → numpy.ndarray

	The technical details of the IntGrad method for NLP tasks are similar for CV tasks, except the noises are
added on the embeddings.

	Parameters

	
	data (tupleornp.ndarray) – The inputs to the NLP model.

	labels (listornp.ndarray, optional) – The target labels to analyze. If None, the most likely label
will be used. Default: None.

	steps (int, optional) – number of steps in the Riemann approximation of the integral. Default: 50.

	gradient_of (str, optional) – compute the gradient of [‘probability’, ‘logit’ or ‘loss’]. Default:
'logit'. Multi-class classification uses probabitliy, while binary classification uses logit.

	embedding_name (str, optional) – name of the embedding layer at which the noises will be applied.
The name of embedding can be verified through print(model). Defaults to word_embeddings.

	Returns

	explanations, or (explanations, pred).

	Return type

	np.ndarray or tuple

LIME

	
class interpretdl.LIMECVInterpreter(model: callable, device: str = 'gpu:0', random_seed: int = None)

	LIME presents a locally explanation by fitting a set of perturbed samples near the target sample using an
interpretable model, specifically a linear model.

The implementation is based on https://github.com/marcotcr/lime.

More details regarding the LIME method can be found in the original paper:
https://arxiv.org/abs/1602.04938.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(data: str, interpret_class: int = None, top_k: int = 1, num_samples: int = 1000, batch_size: int = 50, resize_to: int = 224, crop_to: int = None, visual: bool = True, save_path: str = None)

	Main function of the interpreter.

The implementation is based on https://github.com/marcotcr/lime.

	Parameters

	
	data (str) – The input file path.

	interpret_class (int, optional) – The index of class to interpret. If None, the most likely label will be
used. Default: None.

	top_k (int, optional) – Number of top classes to interpret. Will not be used if interpret_class is
given. Default: 1.

	num_samples (int, optional) – LIME sampling numbers. Larger number of samples usually gives more accurate
interpretation. Default: 1000.

	batch_size (int, optional) – Number of samples to forward each time. Default: 50.

	resize_to (int, optional) – Images will be rescaled with the shorter edge being resize_to. Defaults to
224.

	crop_to (int, optional) – After resize, images will be center cropped to a square image with the size
crop_to. If None, no crop will be performed. Defaults to None.

	visual (bool, optional) – Whether or not to visualize the processed image. Default: True.

	save_path (str, optional) – The filepath(s) to save the processed image(s). If None, the image will not be
saved. Default: None.

	Returns

	LIME results: {interpret_label_i: weights on features}

	Return type

	[dict]

	
class interpretdl.LIMENLPInterpreter(model: callable, device: str = 'gpu:0', random_seed: int = None)

	LIME Interpreter for NLP tasks.

LIME presents a locally explanation by fitting a set of perturbed samples near the target sample using an
interpretable model, specifically a linear model.

The implementation is based on https://github.com/marcotcr/lime.

More details regarding the LIME method can be found in the original paper:
https://arxiv.org/abs/1602.04938.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	random_seed (int) – random seed. Defaults to None.

	
interpret(raw_text: str, tokenizer: callable = None, text_to_input_fn: callable = None, preprocess_fn: callable = None, unk_id: int = 0, pad_id: int = 0, classes_to_interpret: list = None, num_samples: int = 1000, batch_size: int = 50, max_seq_len: int = 128, visual: bool = False)

	Main function of the interpreter.

The implementation is based on https://github.com/marcotcr/lime.

	Parameters

	
	data (str) – The raw string for analysis.

	tokenizer (callable) –

	text_to_input (callable) – A user-defined function that convert raw text string to a tuple of inputs
that can be fed into the NLP model.

	unk_id (int) – The word id to replace occluded words. Typical choices include “”, <unk>, and <pad>.

	pad_id (int or None) – The word id used to pad the sequences. If None, it means there is no padding.
Default: None.

	classes_to_interpret (list or numpy.ndarray, optional) – The index of class to interpret. If None, the most
likely label will be used. can be Default: None.

	num_samples (int, optional) – LIME sampling numbers. Larger number of samples usually gives more accurate
interpretation. Default: 1000.

	batch_size (int, optional) – Number of samples to forward each time. Default: 50.

	visual (bool, optional) – Whether or not to visualize. Default: True.

	Returns

	LIME results: {interpret_label_i: weights on features}

	Return type

	[dict]

GLIME

	
class interpretdl.GLIMECVInterpreter(model: callable, device: str = 'gpu:0')

	G-LIME CV Interpreter. This method integrates the global information from NormLIME or Average to the local
explanation LIME.

More details can be found in this
[pdf link](https://github.com/PaddlePaddle/InterpretDL/files/10110787/glime-aij-paper.pdf).

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
compute_global_weights(g_name: str = 'normlime', list_of_lime_explanations: list = None, list_file_paths: list = None, save_path: str = None)

	Compute the global weights, given the list_of_lime_explanations. This is done by NormLIME or Average
Global Explanations, which are introduced in https://arxiv.org/abs/1909.04200 and
https://arxiv.org/abs/1907.03039 respectively.

	Parameters

	
	g_name (str, optional) – The method to aggregate local explanations. Defaults to 'normlime'.

	list_of_lime_explanations (list, optional) – The LIME results. Defaults to None.

	list_file_paths (list, optional) – This is not implemented currently. Defaults to None.

	save_path (str, optional) – A path to save the global weights, which can be directly used the next time,
and called by set_global_weights(). Defaults to None.

	Raises

	NotImplementedError – NotImplementedError.

	Returns

	Global Weights.

	Return type

	dict

	
interpret(data: str, interpret_class: int = None, top_k: int = 1, prior_method: str = 'none', prior_reg_force: float = 1.0, num_samples: int = 1000, batch_size: int = 50, resize_to: int = 224, crop_to: int = None, visual: bool = True, save_path: str = None)

	Note that for GLIME interpreter, set_global_weights() needs to be called before calling
interpret(). Basically, the technical process of GLIME is similar to LIME. See the
tutorial [https://github.com/PaddlePaddle/InterpretDL/blob/master/tutorials/LIME_Variants_part2.ipynb] for more
details.

	Parameters

	
	data (str) – The input file path.

	interpret_class (int, optional) – The index of class to interpret. If None, the most likely label will be
used. Default: None.

	top_k (int, optional) – Number of top classes to interpret. Will not be used if interpret_class is
given. Default: 1.

	prior_method – Prior method. Can be chosen from {"none", "ridge"}. Defaults to "none", which is
equivalent to LIME. If none, interpret() will use zeros as prior; Otherwise, the loaded
prior will be used.

	prior_reg_force (float, optional) – The regularization force to apply. Default: 1.0.

	num_samples (int, optional) – LIME sampling numbers. Larger number of samples usually gives more accurate
interpretation. Default: 1000.

	batch_size (int, optional) – Number of samples to forward each time. Default: 50

	resize_to (int, optional) – Images will be rescaled with the shorter edge being resize_to. Defaults to
224.

	crop_to ([type], optional) – After resize, images will be center cropped to a square image
with the size crop_to. If None, no crop will be performed. Defaults to None.

	visual (bool, optional) – Whether or not to visualize the processed image. Default: True.

	save_path (str, optional) – The path to save the processed image. If None, the image will not be saved.
Default: None.

	Returns

	LIME results: {interpret_label_i: weights on features}

	Return type

	[dict]

	
set_global_weights(global_weights_info: str)

	Set directly the global weights without any pre-computations.

	Parameters

	global_weights_info (str or dict) – A path of the file or the dict.

LIME With Global Prior

LRP

	
class interpretdl.LRPCVInterpreter(model: callable, device: str = 'gpu:0')

	Layer-wise Relevance Propagation (LRP) Interpreter for CV tasks.

The detailed introduction of LRP can be found in the tutorial. Layer-wise Relevance Propagation (LRP) is an
explanation technique applicable to models structured as neural networks, where inputs can be e.g. images, videos,
or text. LRP operates by propagating the prediction backwards in the neural network, by means of purposely designed
local propagation rules.

Note that LRP requires model have relprop() and related implementations, see
tutorial/assets/lrp_model [https://github.com/PaddlePaddle/InterpretDL/tree/master/tutorials/assets/lrp_model].
This is different from other interpreters, which do not have additional requirements for model.

More details regarding the LRP method can be found in the original paper:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130140.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(inputs, label=None, resize_to=224, crop_to=None, visual=True, save_path=None)

	The difficulty for LRP implementation does not reside the algorithm, but the model. The model should be
implemented with relprop() functions, and the algorithm calls the relevance back-propagation, until
the input layer, where the final explanation is obtained.

	Parameters

	
	inputs (str or list of strs or numpy.ndarray) – The input image filepath or a list of filepaths or numpy
array of read images.

	labels (list or tuple or numpy.ndarray, optional) – The target labels to analyze. The number of labels
should be equal to the number of images. If None, the most likely label for each image will be used.
Default: None.

	resize_to (int, optional) – Images will be rescaled with the shorter edge being resize_to. Defaults to
224.

	crop_to (int, optional) – After resize, images will be center cropped to a square image with the size
crop_to. If None, no crop will be performed. Defaults to None.

	visual (bool, optional) – Whether or not to visualize the processed image. Default: True.

	save_path (str, optional) – The filepath(s) to save the processed image(s). If None, the image will not be
saved. Default: None.

	Returns

	interpretations/Relevance map for images.

	Return type

	[numpy.ndarray]

Occlusion

	
class interpretdl.OcclusionInterpreter(model: callable, device: str = 'gpu:0')

	Occlusion Interpreter.

OcclusionInterpreter follows the simple idea of perturbation that says if the most important input features are
perturbed, then the model’s prediction will change the most. OcclusionInterpreter masks a block of pixels in the
image, and then computes the prediction changes. According to the changes, the final explanation is obtained.

More details regarding the Occlusion method can be found in the original paper:
https://arxiv.org/abs/1311.2901

Part of the code is modified from https://github.com/pytorch/captum/blob/master/captum/attr/_core/occlusion.py.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(inputs: str, sliding_window_shapes: tuple, labels: int = None, strides: int = 1, baselines: numpy.ndarray = None, perturbations_per_eval: int = 1, resize_to: int = 224, crop_to: int = None, visual: bool = True, save_path: str = None)

	Part of the code is modified from https://github.com/pytorch/captum/blob/master/captum/attr/_core/occlusion.py.

	Parameters

	
	inputs (str or list of strs or numpy.ndarray) – The input image filepath or a list of filepaths or numpy
array of read images.

	sliding_window_shapes (tuple) – Shape of sliding windows to occlude data.

	labels (list or tuple or numpy.ndarray, optional) – The target labels to analyze. The number of labels
should be equal to the number of images. If None, the most likely label for each image will be used.
Default: None

	strides (int or tuple) – The step by which the occlusion should be shifted by in each direction for each
iteration. If int, the step size in each direction will be the same. Default: 1.

	baselines (numpy.ndarray or None, optional) – The baseline images to compare with. It should have the same
shape as images. If None, the baselines of all zeros will be used. Default: None.

	perturbations_per_eval (int, optional) – number of occlusions in each batch. Default: 1.

	resize_to (int, optional) – Images will be rescaled with the shorter edge being resize_to. Defaults to
224.

	crop_to (int, optional) – After resize, images will be center cropped to a square image with the size
crop_to. If None, no crop will be performed. Defaults to None.

	visual (bool, optional) – Whether or not to visualize the processed image. Default: True.

	save_path (str, optional) – The filepath(s) to save the processed image(s). If None, the image will not be
saved. Default: None.

	Returns

	interpretations for images

	Return type

	[numpy.ndarray]

Smooth Gradients

	
class interpretdl.SmoothGradInterpreter(model: callable, device: str = 'gpu:0', **kwargs)

	Smooth Gradients Interpreter.

For input gradient based interpreters, the target issue is generally the vanilla input gradient’s noises.
The basic idea of reducing the noises is to use different similar inputs to get the input gradients and
do the average.

Smooth Gradients method solves the problem of meaningless local variations in partial derivatives
by adding random noise to the inputs multiple times and take the average of the gradients.

More details regarding the Smooth Gradients method can be found in the original paper:
http://arxiv.org/abs/1706.03825.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(inputs: str, labels: list = None, noise_amount: int = 0.1, n_samples: int = 50, gradient_of: str = 'probability', resize_to: int = 224, crop_to: int = None, visual: bool = True, save_path: str = None) → numpy.ndarray

	The technical details of the SmoothGrad method are described as follows:
SmoothGrad generates n_samples noised inputs, with the noise scale of noise_amount, and then computes
the gradients w.r.t. these noised inputs. The final explanation is averaged gradients.

	Parameters

	
	inputs (str or list) – The input image filepath or a list of filepaths or numpy array of read images.

	labels (list or np.ndarray, optional) – The target labels to analyze. The number of labels should be equal
to the number of images. If None, the most likely label for each image will be used. Default: None.

	noise_amount (int, optional) – Noise level of added noise to the image. The std of Gaussian random noise
is noise_amount * (x max - x min). Default: 0.1.

	n_samples (int, optional) – The number of new images generated by adding noise. Default: 50.

	gradient_of (str, optional) – compute the gradient of [‘probability’, ‘logit’ or ‘loss’]. Default:
'probability'. SmoothGrad uses probability for all tasks by default.

	resize_to (int, optional) – Images will be rescaled with the shorter edge being resize_to. Defaults to
224.

	crop_to (int, optional) – After resize, images will be center cropped to a square image with the size
crop_to. If None, no crop will be performed. Defaults to None.

	visual (bool, optional) – Whether or not to visualize the processed image. Default: True.

	save_path (str, optional) – The filepath(s) to save the processed image(s). If None, the image will not be
saved. Default: None.

	Returns

	the explanation result.

	Return type

	np.ndarray

Smooth Gradients V2

	
class interpretdl.SmoothGradInterpreterV2(model: callable, device: str = 'gpu:0')

	Smooth Gradients Interpreter.

For input gradient based interpreters, the target issue is generally the vanilla input gradient’s noises.
The basic idea of reducing the noises is to use different similar inputs to get the input gradients and
do the average.

Smooth Gradients method solves the problem of meaningless local variations in partial derivatives
by adding random noise to the inputs multiple times and take the average of the gradients.

This SmoothGradInterpreterV2 only optimizes the GPU usage issue where large GPU memory usage may cause
an error for large models and large batch sizes.

More details regarding the Smooth Gradients method can be found in the original paper:
http://arxiv.org/abs/1706.03825.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(inputs: str, labels: list = None, noise_amount: int = 0.1, n_samples: int = 50, split: int = 2, gradient_of: str = 'probability', resize_to: int = 224, crop_to: int = None, visual: bool = True, save_path: str = None) → numpy.ndarray

	The technical details of the SmoothGrad method are described as follows:
SmoothGrad generates n_samples noised inputs, with the noise scale of noise_amount, and then computes
the gradients w.r.t. these noised inputs. The final explanation is averaged gradients. The difference to
SmoothGradInterpreter is an additional argument split, where total samples are divided into
split parts to pass the model, to avoid large GPU memory usages.

	Parameters

	
	inputs (str or list) – The input image filepath or a list of filepaths or numpy array of read images.

	labels (list or np.ndarray, optional) – The target labels to analyze. The number of labels should be equal
to the number of images. If None, the most likely label for each image will be used. Default: None.

	noise_amount (int, optional) – Noise level of added noise to the image. The std of Gaussian random noise
is noise_amount * (x max - x min). Default: 0.1.

	n_samples (int, optional) – The number of new images generated by adding noise. Default: 50.

	split (int, optional) – The number of splits. Default: 2.

	gradient_of (str, optional) – compute the gradient of [‘probability’, ‘logit’ or ‘loss’]. Default:
'probability'. SmoothGrad uses probability for all tasks by default.

	resize_to (int, optional) – Images will be rescaled with the shorter edge being resize_to. Defaults to
224.

	crop_to (int, optional) – After resize, images will be center cropped to a square image with the size
crop_to. If None, no crop will be performed. Defaults to None.

	visual (bool, optional) – Whether or not to visualize the processed image. Default: True.

	save_path (str, optional) – The filepath(s) to save the processed image(s). If None, the image will not be
saved. Default: None.

	Returns

	the explanation result.

	Return type

	np.ndarray

NormLIME

	
class interpretdl.NormLIMECVInterpreter(model: callable, device: str = 'gpu:0')

	NormLIME Interpreter for CV tasks.

(TODO) Some technical details will be complete soon.

More details regarding the NormLIME method can be found in the original paper:
https://arxiv.org/abs/1909.04200.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1" etc.

	
interpret(image_paths, num_samples=1000, batch_size=50, save_path='normlime_weights.npy', temp_data_file='all_lime_weights.npz')

	Main function of the interpreter.

(TODO) Some technical details will be complete soon.

	Parameters

	
	image_paths (list of strs) – A list of image filepaths.

	num_samples (int, optional) – LIME sampling numbers. Larger number of samples usually gives more
accurate interpretation. Default: 1000

	batch_size (int, optional) – Number of samples to forward each time.
Default: 50

	save_path (str, optional) – The .npy path to save the normlime weights. It is a dictionary where
the key is label and value is segmentation ids with their importance.
Default: ‘normlime_weights.npy’

	temp_data_file (str, optional) – The path to save the intermediate lime weights to avoid repeating computations.
Default: ‘all_lime_weights.npz’. Set to None will not save the intermediate lime weights.

	Returns

	Global feature importance as a dict {label_i: weights on features}

	Return type

	[dict] NormLIME weights

	
class interpretdl.NormLIMENLPInterpreter(model: callable, device: str = 'gpu:0')

	NormLIME Interpreter for NLP tasks.

More details regarding the NormLIME method can be found in the original paper:
https://arxiv.org/abs/1909.04200.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1" etc.

	
interpret(list_of_raw_text, preprocess_fn: callable, num_samples: int, batch_size: int, unk_id: int = 0, pad_id: int = 0, lod_levels: int = None, save_path: str = 'normlime_weights.npy', temp_data_file: str = 'all_lime_weights.npz')

	NormLIMENLPInterpreter computes the LIME results of each sample of data, normalizes and averages the LIME
results. preprocess_fn is used for coping with texts, see the tutorials for an example. num_samples
and batch_size are LIME arguments, for the generated samples and the batch size of each pass.

	Parameters

	
	list_of_raw_text (str) – The raw string for analysis.

	preprocess_fn (Callable) – A user-defined function that input raw string and outputs the a tuple of inputs
to feed into the NLP model.

	num_samples (int, optional) – LIME sampling numbers. Larger number of samples usually gives more accurate
interpretation. Default: 1000

	batch_size (int, optional) – Number of samples to forward each time. Default: 50

	unk_id (int) – The word id to replace occluded words. Typical choices include “”, <unk>, and <pad>.

	pad_id (int or None) – The word id used to pad the sequences. If None, it means there is no padding.
Default: None.

	lod_levels (list or tuple or numpy.ndarray or None, optional) – The lod levels for model inputs. It should
have the length equal to number of outputs given by preprocess_fn. If None, lod levels are all zeros.
Default: None.

	save_path (str, optional) – The .npy path to save the normlime weights. It is a dictionary where the key
is label and value is segmentation ids with their importance. Default: ‘normlime_weights.npy’

	temp_data_file (str, optional) – The .npz path to save the temporal LIME results, to avoid repeating the
computations. Default: ‘all_lime_weights.npz’

	Returns

	{label_i: weights on features}

	Return type

	[dict] NormLIME weights

TAM

	
class interpretdl.TAMInterpreter(model: callable, device: str = 'gpu:0')

	TODO: Inherit from a subabstract interpreter.
Transition Attention Maps Interpreter.

This is a specific interpreter for Transformers models.
TAMInterpreter assumes that the information flowing inside the Transformer model follows the Markov Chain. Within
this supposition, TAMInterpreter considers the attention maps as transition matrices and computes the explanation
by multiplying the initial state with the attention maps, with integrated gradients.

More details regarding the Transition_Attention_Maps method can be found in the original paper:
https://openreview.net/forum?id=TT-cf6QSDaQ.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(inputs: str, start_layer: int = 4, steps: int = 20, label: int = None, resize_to: int = 224, crop_to: int = None, visual: bool = True, save_path: str = None)

	Given inputs, TAMInterpreter obtains all attention maps (of layers whose name matches
attention_layer_pattern) and calculates their matrix multiplication. The start_layer controls the
number of involved layers. The order of involving attention maps (from last layer to the first) is different
from Rollout (from first to last). Then, an integrated gradients with steps is computed and multiplied to
the attention result.

	Parameters

	
	inputs (str or list of strs or numpy.ndarray) – The input image filepath or a list of filepaths or numpy
array of read images.

	start_layer (int, optional) – Compute the state from the start layer. Default: 4.

	steps (int, optional) – number of steps in the Riemann approximation of the integral. Default: 50.

	labels (list or tuple or numpy.ndarray, optional) – The target labels to analyze. The number of labels
should be equal to the number of images. If None, the most likely label for each image will be used.
Default: None.

	resize_to (int, optional) – Images will be rescaled with the shorter edge being resize_to. Defaults to
224.

	crop_to (int, optional) – After resize, images will be center cropped to a square image with the size
crop_to. If None, no crop will be performed. Defaults to None.

	visual (bool, optional) – Whether or not to visualize the processed image. Default: True.

	save_path (str, optional) – The filepath(s) to save the processed image(s). If None, the image will not be
saved. Default: None.

	Returns

	interpretations/heatmap for images

	Return type

	[numpy.ndarray]

Generic Attention

	
class interpretdl.GAInterpreter(model: callable, device: str = 'gpu:0')

	Generic Attention Interpreter.

This is a specific interpreter for Bi-Modal Transformers models. GAInterpreter computes the attention map with
gradients, and follows the operations that are similar to Rollout, with advanced modifications.

This implementation is suitable for models with self-attention in each modality, like
CLIP [https://arxiv.org/abs/2103.00020].

More details regarding the Generic Attention method can be found in the original paper:
https://arxiv.org/abs/2103.15679.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(image_input: str, text: str, text_tokenized: numpy.ndarray, vis_attn_layer_pattern: str = '^visual.transformer.resblocks.[0-9]*.attn.attn_map$', txt_attn_layer_pattern: str = '^transformer.resblocks.[0-9]*.attn.attn_map$', start_layer: int = 11, start_layer_text: int = 11, resize_to: int = 224, crop_to: int = None, visual: bool = True, save_path: str = None) → tuple

	Given image_input and text_tokenized, GAInterpreter first obtains all attention maps (of layers whose
name matches vis_attn_layer_pattern or txt_attn_layer_pattern for visual and text modalities
respectively) and their gradients of the prediction. Then, GAInterpreter computes the multiplication between
the attention map and its gradient for each block, and obtains the matrix multiplication of all blocks. The
start_layer controls the number of involved layers. The order of involving attention maps (from the first
layer to the last) is the same as Rollout (from first to last).

	Parameters

	
	image_input (str or np.ndarray) – The input image filepath or a list of filepaths or numpy array of read
images.

	text (str) – original texts, for visualization.

	text_tokenized (np.ndarray) – The tokenized text for the model’s input directly.

	vis_attn_layer_pattern (str, optional) – the pattern name of the layers whose features will output for
visual modality. Defaults to '^visual.transformer.resblocks.*.attn.attn_map$'.

	txt_attn_layer_pattern (str, optional) – the pattern name of the layers whose features will output for
text modality. Defaults to '^transformer.resblocks.*.attn.attn_map$'.

	start_layer (int, optional) – Compute the state from the start layer for visual modality. Defaults to
11.

	start_layer_text (int, optional) – Compute the state from the start layer for text modality. Defaults to
11.

	resize_to (int, optional) – Images will be rescaled with the shorter edge being resize_to. Defaults to
224.

	crop_to (int, optional) – After resize, images will be center cropped to a square image with the size
crop_to. If None, no crop will be performed. Defaults to None.

	visual (bool, optional) – Whether or not to visualize the processed image. Default: True.

	save_path (str, optional) – The filepath(s) to save the processed image(s). If None, the image will not be
saved. Default: None.

	Returns

	(text_relevance: np.ndarray, image_relevance: np.ndarray)

	Return type

	tuple

	
class interpretdl.GANLPInterpreter(model: callable, device: str = 'gpu:0', **kwargs)

	Generic Attention Interpreter.

This is a specific interpreter for Bi-Modal Transformers models. GAInterpreter computes the attention map with
gradients, and follows the operations that are similar to Rollout, with advanced modifications.

The following implementation is specially designed for Ernie.

More details regarding the Generic Attention method can be found in the original paper:
https://arxiv.org/abs/2103.15679.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(raw_text: str, tokenizer: callable = None, text_to_input_fn: callable = None, label: int = None, start_layer: int = 11, attn_map_name='^[a-z]*.encoder.layers.[0-9]*.self_attn.attn_drop$', gradient_of: str = 'logit', max_seq_len=128, visual=False)

	
	Parameters

	
	data (str or list of strs or numpy.ndarray) – The input text filepath or a list of filepaths or numpy
array of read texts.

	start_layer (int, optional) – Compute the state from the start layer. Default: 11.

	label (list or tuple or numpy.ndarray, optional) – The target labels to analyze. The number of labels
should be equal to the number of texts. If None, the most likely label for each text will be used.
Default: None.

	attn_map_name (str, optional) – The layer name to obtain attention weights.
Default: ^ernie.encoder.layers.*.self_attn.attn_drop$.

	gradient_of (str, optional) – compute the gradient of [‘probability’, ‘logit’ or ‘loss’]. Default:
'logit'. Multi-class classification uses probabitliy, while binary classification uses logit.

	Returns

	interpretations for texts

	Return type

	[numpy.ndarray]

	
class interpretdl.GACVInterpreter(model: callable, device: str = 'gpu:0', **kwargs)

	The following implementation is specially designed for Vision Transformer.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(inputs: str, start_layer: int = 3, attn_map_name='^blocks.[0-9]*.attn.attn_drop$', label: int = None, gradient_of: str = 'probability', resize_to: int = 224, crop_to: int = None, visual: bool = True, save_path: str = None)

	
	Parameters

	
	inputs (str or list of strs or numpy.ndarray) – The input image filepath or a list of filepaths or numpy
array of read images.

	start_layer (int, optional) – Compute the state from the start layer. Default: 4.

	attn_map_name (str, optional) – The layer name to obtain attention weights.
Default: ^blocks.*.attn.attn_drop$

	label (list or tuple or numpy.ndarray, optional) – The target labels to analyze. The number of labels
should be equal to the number of images. If None, the most likely label for each image will be used.
Default: None.

	gradient_of (str, optional) – compute the gradient of [‘probability’, ‘logit’ or ‘loss’]. Default:
'probability'. Multi-class classification uses probabitliy, while binary classification uses logit.

	resize_to (int, optional) – Images will be rescaled with the shorter edge being resize_to. Defaults to
224.

	crop_to (int, optional) – After resize, images will be center cropped to a square image with the size
crop_to. If None, no crop will be performed. Defaults to None.

	visual (bool, optional) – Whether or not to visualize the processed image. Default: True.

	save_path (str, optional) – The filepath(s) to save the processed image(s). If None, the image will not be
saved. Default: None.

	Returns

	interpretations/heatmap for images

	Return type

	[numpy.ndarray]

Bidirectional Transformer Interpreter

	
class interpretdl.BTCVInterpreter(model: callable, device: str = 'gpu:0', **kwargs)

	Bidirectional Transformer Interpreter.

This is a specific interpreter for Transformers models, with two sub-processes: attentional perception, reasoning feedback.

The following implementation is specially designed for Vision Transformer.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(inputs: str, ap_mode: str = 'head', start_layer: int = 3, steps: int = 20, attn_map_name='^blocks.[0-9]*.attn.attn_drop$', attn_v_name='^blocks.[0-9]*.attn.qkv$', attn_proj_name='^blocks.[0-9]*.attn.proj$', gradient_of: str = 'probability', label: int = None, resize_to: int = 224, crop_to: int = None, visual: bool = True, save_path: str = None)

	
	Parameters

	
	inputs (str or list of strs or numpy.ndarray) – The input image filepath or a list of filepaths or numpy
array of read images.

	ap_mode (str, optional) – The approximation method of attentioanl perception stage,
“head” for head-wise, “token” for token-wise. Default: head.

	start_layer (int, optional) – Compute the state from the start layer. Default: 4.

	steps (int, optional) – number of steps in the Riemann approximation of the integral. Default: 20.

	attn_map_name (str, optional) – The layer name to obtain the attention weights, head-wise/token-wise.
Default: ^blocks.*.attn.attn_drop$.

	attn_v_name (str, optional) – The layer name for query, key, value, token-wise.
Default: blocks.*.attn.qkv.

	attn_proj_name (str, optional) – The layer name for linear projection, token-wise.
Default: blocks.*.attn.proj.

	gradient_of (str, optional) – compute the gradient of [‘probability’, ‘logit’ or ‘loss’]. Default:
'probability'. Multi-class classification uses probabitliy, while binary classification uses logit.

	label (list or tuple or numpy.ndarray, optional) – The target labels to analyze. The number of labels
should be equal to the number of images. If None, the most likely label for each image will be used.
Default: None.

	resize_to (int, optional) – Images will be rescaled with the shorter edge being resize_to. Defaults to
224.

	crop_to (int, optional) – After resize, images will be center cropped to a square image with the size
crop_to. If None, no crop will be performed. Defaults to None.

	visual (bool, optional) – Whether or not to visualize the processed image. Default: True.

	save_path (str, optional) – The filepath(s) to save the processed image(s). If None, the image will not be
saved. Default: None.

	Returns

	interpretations/heatmap for images

	Return type

	[numpy.ndarray]

	
class interpretdl.BTNLPInterpreter(model: callable, device: str = 'gpu:0', **kwargs)

	Bidirectional Transformer Interpreter.

This is a specific interpreter for Transformers models, with two sub-processes: attentional perception, reasoning feedback.

The following implementation is specially designed for Ernie.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(raw_text: str, tokenizer: callable = None, text_to_input_fn: callable = None, label: list = None, ap_mode: str = 'head', start_layer: int = 11, steps: int = 20, embedding_name='^[a-z]*.embeddings$', attn_map_name='^[a-z]*.encoder.layers.[0-9]*.self_attn.attn_drop$', attn_v_name='^[a-z]*.encoder.layers.[0-9]*.self_attn.v_proj$', attn_proj_name='^[a-z]*.encoder.layers.[0-9]*.self_attn.out_proj$', gradient_of: str = 'logit', max_seq_len=128, visual=False)

	
	Parameters

	
	data (str or list of strs or numpy.ndarray) – The input text filepath or a list of filepaths or numpy
array of read texts.

	ap_mode (str, default to head-wise) – The approximation method of attentioanl perception stage,
“head” for head-wise, “token” for token-wise. Default: head.

	start_layer (int, optional) – Compute the state from the start layer. Default: 11.

	steps (int, optional) – number of steps in the Riemann approximation of the integral. Default: 20.

	embedding_name (str, optional) – The layer name for embedding, head-wise/token-wise.
Default: ^ernie.embeddings$.

	attn_map_name (str, optional) – The layer name to obtain the attention weights, head-wise/token-wise.
Default: ^ernie.encoder.layers.*.self_attn.attn_drop$.

	attn_v_name (str, optional) – The layer name for value projection, token-wise.
Default: ^ernie.encoder.layers.*.self_attn.v_proj$.

	attn_proj_name (str, optional) – The layer name for linear projection, token-wise.
Default: ernie.encoder.layers.*.self_attn.out_proj$.

	gradient_of (str, optional) – compute the gradient of [‘probability’, ‘logit’ or ‘loss’]. Default:
'logit'. Multi-class classification uses probabitliy, while binary classification uses logit.

	label (list or tuple or numpy.ndarray, optional) – The target labels to analyze. The number of labels
should be equal to the number of texts. If None, the most likely label for each text will be used.
Default: None.

	Returns

	interpretations for texts

	Return type

	[numpy.ndarray]

Intermediate-Layer Feature Interpreters

Grad-CAM

	
class interpretdl.GradCAMInterpreter(model: callable, device: str = 'gpu:0')

	Gradient CAM Interpreter.

Given a convolutional network and an image classification task, classification activation map (CAM) can be derived
from the global average pooling and the last fully-connected layer, and show the important regions that affect
model’s decisions.

GradCAM further looks at the gradients flowing into one of the convolutional layers to give weight to activation
maps. Note that if there is a global average pooling layer in the network, GradCAM targeting the last layer is
equivalent to CAM.

More details regarding the CAM method can be found in the original paper:
https://arxiv.org/abs/1512.04150.

More details regarding the GradCAM method can be found in the original paper:
https://arxiv.org/abs/1610.02391.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(inputs: str, target_layer_name: str, label: list = None, resize_to: int = 224, crop_to: int = None, visual: bool = True, save_path: str = None) → numpy.ndarray

	The technical details of the GradCAM method are described as follows:
GradCAM computes the feature map at the layer of target_layer_name and the gradient of the objective
function w.r.t. target_layer_name. With the average of gradients along the spatial dimensions, gradients
will be multiplied with feature map, following by a ReLU activation to produce the final explanation.

	Parameters

	
	inputs (str or list of strs or numpy.ndarray) – The input image filepath or a list of filepaths or numpy
array of read images.

	target_layer_name (str) – The target layer to calculate gradients.

	labels (list or tuple or numpy.ndarray, optional) – The target labels to analyze.
The number of labels should be equal to the number of images. If None, the most likely label for each
image will be used. Default: None.

	resize_to (int, optional) – Images will be rescaled with the shorter edge being resize_to. Defaults to
224.

	crop_to (int, optional) – After resize, images will be center cropped to a square image with the size
crop_to. If None, no crop will be performed. Defaults to None.

	visual (bool, optional) – Whether or not to visualize the processed image. Default: True.

	save_path (str, optional) – The filepath(s) to save the processed image(s). If None, the image will not be
saved. Default: None.

	Returns

	interpretations/heatmap for images

	Return type

	[numpy.ndarray]

Score CAM

	
class interpretdl.ScoreCAMInterpreter(model: callable, device: str = 'gpu:0')

	Score-CAM Interpreter.

ScoreCAMInterpreter bridges the gap between perturbation-based and CAM-based methods, and derives the weight of
activation maps in an intuitively understandable way.

More details regarding the Score CAM method can be found in the original paper:
https://arxiv.org/abs/1910.01279.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(inputs: str, target_layer_name: str, labels: list = None, resize_to: int = 224, crop_to: int = None, visual: bool = True, save_path: str = None) → numpy.ndarray

	Main function of the interpreter.

(TODO) The technical details will be described later.

	Parameters

	
	inputs (str or list of strs or numpy.ndarray) – The input image filepath or a list of filepaths or numpy
array of read images.

	target_layer_name (str) – The target layer to calculate gradients.

	labels (list or tuple or numpy.ndarray, optional) – The target labels to analyze. The number of labels
should be equal to the number of images. If None, the most likely label for each image will be used.
Default: None.

	resize_to (int, optional) – Images will be rescaled with the shorter edge being resize_to. Defaults to
224.

	crop_to (int, optional) – After resize, images will be center cropped to a square image with the size
crop_to. If None, no crop will be performed. Defaults to None.

	visual (bool, optional) – Whether or not to visualize the processed image. Default: True.

	save_path (str, optional) – The filepath(s) to save the processed image(s). If None, the image will not be
saved. Default: None.

	Returns

	interpretations/heatmap for images

	Return type

	[np.ndarray]

Rollout

	
class interpretdl.RolloutInterpreter(model: callable, device: str = 'gpu:0')

	Rollout Interpreter.

This is a specific interpreter for Transformers models.
RolloutInterpreter assumes that attentions can be linearly combined and the obtained score is able to show the
scores of tokens, which gives an explanation of token importance.

More details regarding the Rollout method can be found in the original paper:
https://arxiv.org/abs/2005.00928.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(inputs: str, start_layer: int = 0, attention_layer_pattern: str = '^blocks.*.attn.attn_drop$', resize_to: int = 224, crop_to: int = None, visual: bool = True, save_path: str = None)

	Given inputs, RolloutInterpreter obtains all attention maps (of layers whose name matches
attention_layer_pattern) and calculates their matrix multiplication. The start_layer controls the
number of involved layers.

	Parameters

	
	inputs (str or list of strs or numpy.ndarray) – The input image filepath or a list of filepaths or numpy
array of read images.

	start_layer (int, optional) – The index of the start layer involving the computation of attentions. Defaults
to 0.

	attention_layer_pattern (str, optional) – the string pattern to pick the layers that match the pattern.
Defaults to ^blocks.*.attn.attn_drop$.

	resize_to (int, optional) – Images will be rescaled with the shorter edge being resize_to. Defaults to
224.

	crop_to (int, optional) – After resize, images will be center cropped to a square image with the size
crop_to. If None, no crop will be performed. Defaults to None.

	visual (bool, optional) – Whether or not to visualize the processed image. Default: True.

	save_path (str, optional) – The filepath(s) to save the processed image(s). If None, the image will not be
saved. Default: None.

	Returns

	interpretations/heatmap for images.

	Return type

	[np.ndarray]

Dataset-Level Interpreters

Training Dynamics

	
class interpretdl.TrainingDynamics(paddle_model: callable, device: str = 'gpu:0')

	Training Dynamics Interpreter focus the behavior of each training sample by
running a normal SGD training process.

By recording the training dynamics, interpreter can diagnose dataset with
hand-designed features or by learning solution.

After interpretation on the level of data, we can handle better the datasets
with underlying label noises, thus can achieve a better performance on it.

More training dynamics based methods including [Forgetting Events]
and [Dataset Mapping] will be available in this interpreter.

	Parameters

	
	paddle_model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running paddle_model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
generator(train_loader: callable, optimizer: <module 'paddle.optimizer' from '/home/docs/checkouts/readthedocs.org/user_builds/interpretdl/envs/latest/lib/python3.7/site-packages/paddle/optimizer/__init__.py'>, epochs: int)

	Run the training process and record the forgetting events statistics.

	Parameters

	
	train_loader (callable) – A training data generator.

	optimizer (paddle.optimizer) – The paddle optimizer.

	epochs (int) – The number of epochs to train the model.

	Returns

	A pointwise training dynamics(history) for each epoch.

	Return type

	training_dynamics (dict)

	
save(logits, assigned_targets, label_flip=None, save_path=None)

	Save transformed training dynamics .

	Parameters

	save_path (_type_, optional) – The filepath to save the processed image.
If None, the image will not be saved. Default: None

	
transform(logits, assigned_targets)

	Transform training dynamics with linear interpolation.

	Parameters

	
	logits (dict) – A dictionary recording training dynamics.

	assigned_targets (list) – The assigned targets of dataset,.

Beyond Hand-designed Feature Interpreter

	
class interpretdl.BHDFInterpreter(detector: callable = None, device: str = 'gpu:0')

	BHDFInterpreter takes the training dynamics as raw input and lets an LSTM model to predict whether the sample is
mislabeled or clean. We have provided a pre-trained LSTM, which can be directly used for identifying the mislabels.

TODO: to add the arxiv link.
More details regarding this method can be found in the original paper: [link_to_be_annonced]().

For reproduction experiments, refer to [this repo](https://github.com/Christophe-Jia/mislabel-detection).

	Parameters

	
	detector (callable, optional) – A detector model for identifying the mislabeled samples. Defaults to None.

	device (str, optional) – The device used for running detector, options: "cpu", "gpu:0",
"gpu:1" etc. Defaults to ‘gpu:0’.

	
interpret(training_dynamics=None, training_dynamics_path='assets/training_dynamics.npz')

	Call this function to rank samples’ correctness.

	Parameters

	
	training_dynamics (dict, optional) – Training dynamics is a dictionary, which has keys as follows:

	{ –

	label_flip – list: The position of label contamination where True indicates label noise;

	labels – numpy.ndarray: with shape of length of dataset * class number, generated by
TrainingDynamics.generator;

	td – numpy.ndarray: with shape of length of dataset * training epochs * class number, point-wise
probability for each epoch, generated by TrainingDynamics.generator.

	} –

	Returns

	(order,predictions) where order is {ranking of label correctness
in form of data indices list} and predictions is {point-wise predictions as clean}.

	Return type

	(numpy.ndarray, list)

Forgetting Events

	
class interpretdl.ForgettingEventsInterpreter(model: callable, device: str = 'gpu:0')

	Forgetting Events Interpreter computes the frequency of forgetting events for each training sample by
running a normal training process. The training sample undergoes a forgetting event if it is misclassified
at step t+1 after having been correctly classified at step t.

A training sample would be more probable to be mislabeled or hard to learn if it has more forgetting events
happened.

More details regarding the Forgetting Events method can be found in the original paper:
https://arxiv.org/abs/1812.05159.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc.

	
interpret(train_reader: callable, optimizer: <module 'paddle.optimizer' from '/home/docs/checkouts/readthedocs.org/user_builds/interpretdl/envs/latest/lib/python3.7/site-packages/paddle/optimizer/__init__.py'>, batch_size: int, epochs: int, find_noisy_labels=False, save_path=None)

	Run the training process and record the forgetting events statistics.

	Parameters

	
	train_reader (callable) – A training data generator.

	optimizer (paddle.optimizer) – The paddle optimizer.

	batch_size (int) – Number of samples to forward each time.

	epochs (int) – The number of epochs to train the model.

	find_noisy_labels (bool, optional) – whether to find noisy labels. Defaults to False.

	save_path (_type_, optional) – The filepath to save the processed image.
If None, the image will not be saved. Default: None

	Returns

	(count_forgotten, forgotten) where count_forgotten is {count of forgetting events:
list of data indices with such count of forgetting events} and forgotten is {data index: numpy.ndarray of
wrong predictions that follow true predictions in the training process}.

	Return type

	(dict, dict)

SGDNoise

See Tutorials [https://github.com/PaddlePaddle/InterpretDL/tree/master/tutorials].

TrainIng Data analYzer (TIDY)

See Tutorials [https://github.com/PaddlePaddle/InterpretDL/tree/master/tutorials].

Interpreter Trustworthiness Evaluation Metrics

Abstract Evaluator

	
class interpretdl.InterpreterEvaluator(model: callable, device: str = 'gpu:0', **kwargs)

	InterpreterEvaluator is the base abstract class for all interpreter evaluators. The core function evaluate
should be implemented.

All evaluators aim to evaluate the trustworthiness of the interpretation algorithms. Besides theoretical
verification of the algorithm, here the evaluators validate the trustworthiness by looking through the obtained
explanations from the interpretation algorithms. Different evaluators are provided.

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions. This
is not always required if the model is not involved.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc. Again, this is not always required if the model is not involved.

DeletionInsertion

	
class interpretdl.DeletionInsertion(model: callable, device: str, compute_deletion: bool = True, compute_insertion: bool = True, **kwargs)

	Deletion & Insertion Interpreter Evaluation method.

The evaluation of interpretation algorithms follows the intuition that flipping the most salient pixels first
should lead to high performance decay. Perturbation-based examples can therefore be used for the trustworthiness
evaluations of interpretation algorithms.

The Deletion metric is computed as follows. The perturbation starts from an original image, perturbs (zeros
out) the most important pixels in the input, and then computes the responses of the trained model. So that a
curve, with ratios of perturbed pixels as x-axis and probabilities as y-axis, can be obtained and the area under
this curve is the deletion score.

The Insertion metric is similar, but the perturbation starts from a zero image, inserts the most important pixels
to the input, and then computes the responses of the trained model. A similar curve can be obtained and the area
under this curve is the insertion score.

More details regarding the Deletion & Insertion method can be found in the original paper:
https://arxiv.org/abs/1806.07421

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions. This
is not always required if the model is not involved.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc. Again, this is not always required if the model is not involved.

	compute_deletion (bool, optional) – Whether compute deletion score. Defaults to True.

	compute_insertion (bool, optional) – Whether compute insertion score. Defaults to True.

	Raises

	ValueError – At least one of compute_deletion and compute_insertion must be True.

	
evaluate(img_path: str, explanation: dict, batch_size: int = None, resize_to: int = 224, crop_to: int = None, limit_number_generated_samples: int = None) → dict

	Given img_path, DeletionInsertion first generates perturbed samples of deletion and insertion,
respectively, according to the order provided by explanation. The number of samples is defined by
limit_number_generated_samples (a sampling is used for the numbers are different). Then DeletionInsertion
computes the probabilities of these perturbed samples, and the mean of all probabilities of the class of
interest is computed for the final score.

Note that LIME produces explanations based on superpixels, the number of perturbed samples is originally equal
to the number of superpixels. So if limit_number_generated_samples is None, then the number of superpixels
is used. For other explanations that produce the explanation of the same spatial dimension as the input image,
limit_number_generated_samples is set to 20 if not given.

	Parameters

	
	img_path (str) – a string for image path.

	explanation (dict or np.ndarray) – the explanation result from an interpretation algorithm.

	batch_size (int or None, optional) – batch size for each pass. Defaults to None.

	resize_to (int, optional) – Images will be rescaled with the shorter edge being resize_to. Defaults to
224.

	crop_to (int, optional) – After resize, images will be center cropped to a square image with the size
crop_to. If None, no crop will be performed. Defaults to None.

	limit_number_generated_samples (int or None, optional) – a maximum value for samples of perturbation. If
None, it will be automatically chosen. The number of superpixels is used for LIME explanations,
otherwise, 20 is to be set. Defaults to None.

	Returns

	A dict containing 'deletion_score', 'del_probas', 'deletion_images', 'insertion_score',
'ins_probas' and 'insertion_images', if compute_deletion and compute_insertion
are both True.

	Return type

	dict

Perturbation

	
class interpretdl.Perturbation(model: callable, device: str = 'gpu:0', compute_MoRF: bool = True, compute_LeRF: bool = True, **kwargs)

	Perturbation based Evaluations.

The evaluation of interpretation algorithms follows the intuition that flipping the most salient pixels first
should lead to high performance decay. Perturbation-based examples can therefore be used for the trustworthiness
evaluations of interpretation algorithms.

Two metrics are provided: most relevant first (MoRF) and least relevant first (LeRF).

The MoRF metric is computed as follows. The perturbation starts from an original image, perturbs (zeros
out) the most important pixels in the input, and then computes the responses of the trained model. So that a
curve, with ratios of perturbed pixels as x-axis and probabilities as y-axis, can be obtained and the area under
this curve is the MoRF score.

The LeRF metric is similar, but the perturbation perturbs (zeros out) the least important pixels in the input and
then computes the responses of the trained model. A similar curve can be obtained and the area under this curve is
the LeRF score.

Note that MoRF is equivalent to Deletion, but LeRF is NOT equivalent to Insertion.

More details of MoRF and LeRF can be found in the original paper:
https://arxiv.org/abs/1509.06321.

summary

	Parameters

	
	model (callable) – A model with forward() and possibly backward() functions. This
is not always required if the model is not involved.

	device (str) – The device used for running model, options: "cpu", "gpu:0", "gpu:1"
etc. Again, this is not always required if the model is not involved.

	compute_MoRF (bool, optional) – Whether comptue MoRF score. Defaults to True.

	compute_LeRF (bool, optional) – Whether comptue LeRF score. Defaults to True.

	Raises

	ValueError – ‘At least one of compute_MoRF and compute_LeRF must be True.’

	
evaluate(img_path: str, explanation: list, batch_size=None, resize_to=224, crop_to=None, limit_number_generated_samples=None) → dict

	Given img_path, Perturbation first generates perturbed samples of MoRF and LeRF respectively, according
to the order provided by explanation. The number of samples is defined by
limit_number_generated_samples (a sampling is used for the numbers are different). Then Perturbation
computes the probabilities of these perturbed samples, and the mean of all probabilities of the class of
interest is computed for the final score.

Note that LIME produces explanations based on superpixels, the number of perturbed samples is originally equal
to the number of superpixels. So if limit_number_generated_samples is None, then the number of superpixels
is used. For other explanations that produce the explanation of the same spatial dimension as the input image,
limit_number_generated_samples is set to 20 if not given.

	Parameters

	
	img_path (str) – a string for image path.

	explanation (list or np.ndarray) – the explanation result from an interpretation algorithm.

	batch_size (int or None, optional) – batch size for each pass. Defaults to None.

	resize_to (int, optional) – Images will be rescaled with the shorter edge being resize_to. Defaults to
224.

	crop_to (int, optional) – After resize, images will be center cropped to a square image with the size
crop_to. If None, no crop will be performed. Defaults to None.

	limit_number_generated_samples (int or None, optional) – a maximum value for samples of perturbation. If
None, it will be automatically chosen. The number of superpixels is used for LIME explanations,
otherwise, 20 is to be set. Defaults to None.

	Returns

	A dict containing 'MoRF_score', 'MoRF_probas', 'MoRF_images', 'LeRF_score',
'LeRF_probas' and 'LeRF_images', if compute_MoRF and compute_LeRF are both True.

	Return type

	dict

Infidelity

	
class interpretdl.Infidelity(model: callable, device: str = 'gpu:0', **kwargs)

	Infidelity Interpreter Evaluation method.

The idea of fidelity is similar to the faithfulness evaluation, to evaluate how faithful/reliable/loyal of the
explanations to the model. (In)fidelity measures the normalized squared Euclidean distance between two terms:
the product of a perturbation and the explanation, and the difference between the model’s response to the original
input and the one to the perturbed input, i.e.

\[INFD(\Phi, f, x) = \mathbb{E}_{I \sim \mu_I} [(I^T \Phi(f, x) - (f(x) - f(x - I)))^2],\]

where the meaning of the symbols can be found in the original paper.

A normalization is added, which is not in the paper but in the
official implementation [https://github.com/chihkuanyeh/saliency_evaluation]:

\[\beta = \frac{
 \mathbb{E}_{I \sim \mu_I} [I^T \Phi(f, x) (f(x) - f(x - I))]
 }{
 \mathbb{E}_{I \sim \mu_I} [(I^T \Phi(f, x))^2]
 }\]

Intuitively, given a perturbation, e.g., a perturbation on important pixels, the product (the former term) should
be relatively large if the explanation indicates the important pixels too, compared to a perturbation on irrelavant
pixels; while the difference (the latter term) should also be large because the model depends on important pixels
to make decisions. Like this, large values would be offset by large values if the explanation is faithful to the
model. Otherwise, for uniform explanations (all being constant), the former term would be a constant value and the
infidelity would become large.

More details about the measure can be found in the original paper: https://arxiv.org/abs/1901.09392.

	Parameters

	
	model (callable) – _description_

	device (_type_, optional) – _description_. Defaults to ‘gpu:0’.

	
_build_predict_fn(rebuild: bool = False)

	Different from InterpreterEvaluator._build_predict_fn(): using logits.

	Parameters

	rebuild (bool, optional) – _description_. Defaults to False.

	Returns

	description

	Return type

	type

	
evaluate(img_path: str, explanation: numpy.ndarray, recompute: bool = False, batch_size: int = 50, resize_to: int = 224, crop_to: int = None)

	Given img_path, Infidelity first generates perturbed samples, with a square removal strategy on the
original image. Since the difference (the second term in the infidelity formula) is independ of the
explanation, so we temporaily save these results in case this image has other explanations for evaluations.

Then, given explanation, we follow the formula to compute the infidelity. A normalization is added,
which is not in the paper but in the
official implementation [https://github.com/chihkuanyeh/saliency_evaluation].

	Parameters

	
	img_path (strornp.ndarray) – a string for image path.

	explanation (np.ndarray) – the explanation result from an interpretation algorithm.

	recompute (bool, optional) – whether forcing to recompute. Defaults to False.

	batch_size (int, optional) – batch size for each pass.. Defaults to 50.

	resize_to (int, optional) – Images will be rescaled with the shorter edge being resize_to. Defaults to
224.

	crop_to (int, optional) – After resize, images will be center cropped to a square image with the size
crop_to. If None, no crop will be performed. Defaults to None.

	Returns

	the infidelity score.

	Return type

	int

Model Interpretability Evaluation Metrics

PointGame

	
class interpretdl.PointGame

	Pointing Game Evaluation Method.

This evaluator assumes that the explanation result should align with the visual objects. Based on this idea, the
evaluation is to compute the alignment between the bounding box or semantic segmentation with the explanations.

PointGame computes the alignment to the bounding box. PointGameSegmentation computes the alignment to the
semantic segmentation.

More details can be found in the original paper:
https://arxiv.org/abs/1608.00507.

Note that the bounding box of annotations is required for the evaluation. This method does not need models. For API
compatibility, we implement it within the same functions as other evaluators.

	
evaluate(bbox: tuple, exp_array: numpy.ndarray, threshold=0.25) → dict

	Since the explanation is actually a ranking order, PointGame computes two categories of measures. One is based
on thresholding. Here, threshold * max(exp_array) is used as the threshold. Based on this, precision,
recall and F1 score are computed, w.r.t. bbox. Another measure does not depend on the threshold. Here,
the ROC AUC score and the Average Precision (both of them are imported from sklearn.metrics) are
computed.

	Parameters

	
	bbox (tuple) – A tuple of four integers: (x1, y1, x2, y2), where (x1, y1) is the coordinates of the top-left
point w.r.t. width and height respectively; (x2, y2) is the coordinates of the bottom-right point
w.r.t. width and height respectively;

	exp_array (np.ndarray) – the explanation result from an interpretation algorithm.

	threshold (float, optional) – threshold for computing precision, recall and F1 score. Defaults to 0.25.

	Returns

	A dict containing precision, recall, f1_score and auc_score, ap_score, where the
first three depend on the threshold and the last two do not.

	Return type

	dict

PointGameSegmentation

	
class interpretdl.PointGameSegmentation

	Pointing Game Evaluation Method using Segmentation.

This evaluator assumes that the explanation result should align with the visual objects. Based on this idea, the
evaluation is to compute the alignment between the bounding box or semantic segmentation with the explanations.

PointGame computes the alignment to the bounding box. PointGameSegmentation computes the alignment to the
semantic segmentation.

More details can be found in the original paper:
https://arxiv.org/abs/1608.00507.

Note that the semantic segmentation is required for the evaluation. This method does not need models. For API
compatibility, we implement it within the same functions as other evaluators.

	
evaluate(seg_gt: numpy.ndarray, exp_array: numpy.ndarray, threshold=0.25) → dict

	Since the explanation is actually a ranking order, PointGameSegmentation computes two categories of measures.
One is based on thresholding. Here, threshold * max(exp_array) is used as the threshold. Based on this,
precision, recall and F1 score are computed, w.r.t. seg_gt. Another measure does not depend on the
threshold. Here, the ROC AUC score and the Average Precision (both of them are imported from
sklearn.metrics) are computed.

	Parameters

	
	seg_gt (np.ndarray) – binary values are supported only currently.

	exp_array (np.ndarray) – the explanation result from an interpretation algorithm.

	threshold (float, optional) – threshold for computing precision, recall and F1 score. Defaults to 0.25.

	Returns

	A dict containing precision, recall, f1_score and auc_score, ap_score, where the
first three depend on the threshold and the last two do not.

	Return type

	dict

Index

 _
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | N
 | O
 | P
 | R
 | S
 | T

_

 	
 	_build_predict_fn() (interpretdl.Infidelity method)

 	(interpretdl.InputGradientInterpreter method)

 	(interpretdl.InputOutputInterpreter method)

 	(interpretdl.IntermediateLayerInterpreter method)

 	(interpretdl.Interpreter method)

 	(interpretdl.TransformerInterpreter method)

 	
 	_env_setup() (interpretdl.Interpreter method)

B

 	
 	BHDFInterpreter (class in interpretdl)

 	
 	BTCVInterpreter (class in interpretdl)

 	BTNLPInterpreter (class in interpretdl)

C

 	
 	compute_global_weights() (interpretdl.GLIMECVInterpreter method)

 	
 	ConsensusInterpreter (class in interpretdl)

D

 	
 	DeletionInsertion (class in interpretdl)

E

 	
 	evaluate() (interpretdl.DeletionInsertion method)

 	(interpretdl.Infidelity method)

 	(interpretdl.Perturbation method)

 	(interpretdl.PointGame method)

 	(interpretdl.PointGameSegmentation method)

F

 	
 	ForgettingEventsInterpreter (class in interpretdl)

G

 	
 	GACVInterpreter (class in interpretdl)

 	GAInterpreter (class in interpretdl)

 	GANLPInterpreter (class in interpretdl)

 	generator() (interpretdl.TrainingDynamics method)

 	
 	GLIMECVInterpreter (class in interpretdl)

 	GradCAMInterpreter (class in interpretdl)

 	GradShapCVInterpreter (class in interpretdl)

 	GradShapNLPInterpreter (class in interpretdl)

I

 	
 	Infidelity (class in interpretdl)

 	InputGradientInterpreter (class in interpretdl)

 	InputOutputInterpreter (class in interpretdl)

 	IntermediateLayerInterpreter (class in interpretdl)

 	interpret() (interpretdl.BHDFInterpreter method)

 	(interpretdl.BTCVInterpreter method)

 	(interpretdl.BTNLPInterpreter method)

 	(interpretdl.ConsensusInterpreter method)

 	(interpretdl.ForgettingEventsInterpreter method)

 	(interpretdl.GACVInterpreter method)

 	(interpretdl.GAInterpreter method)

 	(interpretdl.GANLPInterpreter method)

 	(interpretdl.GLIMECVInterpreter method)

 	(interpretdl.GradCAMInterpreter method)

 	(interpretdl.GradShapCVInterpreter method)

 	(interpretdl.GradShapNLPInterpreter method)

 	(interpretdl.IntGradCVInterpreter method)

 	(interpretdl.IntGradNLPInterpreter method)

 	(interpretdl.Interpreter method)

 	(interpretdl.LIMECVInterpreter method)

 	(interpretdl.LIMENLPInterpreter method)

 	(interpretdl.LRPCVInterpreter method)

 	(interpretdl.NormLIMECVInterpreter method)

 	(interpretdl.NormLIMENLPInterpreter method)

 	(interpretdl.OcclusionInterpreter method)

 	(interpretdl.RolloutInterpreter method)

 	(interpretdl.ScoreCAMInterpreter method)

 	(interpretdl.SmoothGradInterpreter method)

 	(interpretdl.SmoothGradInterpreterV2 method)

 	(interpretdl.TAMInterpreter method)

 	
 	Interpreter (class in interpretdl)

 	InterpreterEvaluator (class in interpretdl)

 	IntGradCVInterpreter (class in interpretdl)

 	IntGradNLPInterpreter (class in interpretdl)

L

 	
 	LIMECVInterpreter (class in interpretdl)

 	
 	LIMENLPInterpreter (class in interpretdl)

 	LRPCVInterpreter (class in interpretdl)

N

 	
 	NormLIMECVInterpreter (class in interpretdl)

 	
 	NormLIMENLPInterpreter (class in interpretdl)

O

 	
 	OcclusionInterpreter (class in interpretdl)

P

 	
 	Perturbation (class in interpretdl)

 	
 	PointGame (class in interpretdl)

 	PointGameSegmentation (class in interpretdl)

R

 	
 	RolloutInterpreter (class in interpretdl)

S

 	
 	save() (interpretdl.TrainingDynamics method)

 	ScoreCAMInterpreter (class in interpretdl)

 	
 	set_global_weights() (interpretdl.GLIMECVInterpreter method)

 	SmoothGradInterpreter (class in interpretdl)

 	SmoothGradInterpreterV2 (class in interpretdl)

T

 	
 	TAMInterpreter (class in interpretdl)

 	TrainingDynamics (class in interpretdl)

 	
 	transform() (interpretdl.TrainingDynamics method)

 	TransformerInterpreter (class in interpretdl)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 InterpretDL

 		
 Interpreters

 		
 Base Interpreter

 		
 Abstract Interpreter

 		
 Sub-abstract: Input Gradient Interpreter

 		
 Sub-abstract: Input Output Interpreter

 		
 Sub-abstract: Intermediate-Layer Interpreter

 		
 Sub-abstract: Transformer Interpreter

 		
 Input Feature Based Interpreters

 		
 Consensus

 		
 Gradient Shap

 		
 Integrated Gradients

 		
 LIME

 		
 GLIME

 		
 LIME With Global Prior

 		
 LRP

 		
 Occlusion

 		
 Smooth Gradients

 		
 Smooth Gradients V2

 		
 NormLIME

 		
 TAM

 		
 Generic Attention

 		
 Bidirectional Transformer Interpreter

 		
 Intermediate-Layer Feature Interpreters

 		
 Grad-CAM

 		
 Score CAM

 		
 Rollout

 		
 Dataset-Level Interpreters

 		
 Training Dynamics

 		
 Beyond Hand-designed Feature Interpreter

 		
 Forgetting Events

 		
 SGDNoise

 		
 TrainIng Data analYzer (TIDY)

 		
 Interpreter Trustworthiness Evaluation Metrics

 		
 Abstract Evaluator

 		
 DeletionInsertion

 		
 Perturbation

 		
 Infidelity

 		
 Model Interpretability Evaluation Metrics

 		
 PointGame

 		
 PointGameSegmentation

_static/up-pressed.png

_static/up.png

